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1. Using malloc to Allocate Memory

1. Usingmalloc to Allocate Memory

* Let’s revisit an example we saw in a previous topic
¢ Assume we wish to refactor appending a node to a chain into its
own function

Draw a state diagram corresponding stack
to the execution of this program

typedef struct _node_t

{
int value;
struct _node_t* next_ptr;
}
node_t;

node_t* append( node_t* n_ptr,
int value )
{
node_t node;
node.value = value;
node.next_ptr = n_ptr;
return &node;

}

int main( void )

{
node_t* n_ptr = NULL;
n_ptr = append( n_ptr,
n_ptr = append( n_ptr,
return O;
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1. Using malloc to Allocate Memory

* Let’s consider a similar idea for arrays
* Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 #include <stddef.h>

3 int* init_array( int n )

+ 1

5 int x[n];

6

7 for ( int i=0; i<n; i++ )
8 x[i] = 0;

9

10 return x;

11 }

12

13 int main( void )

14 {

15 int* a = init_array(3);
16 return 0;

17 }

List two errors with this function:
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1. Using malloc to Allocate Memory

* Dynamic memory allocation uses the heap (new region of memory)

* Because dynamically allocated variables are not on a function’s stack
frame, they are not deallocated when a function returns

¢ We can dynamically allocate variables on the heap using malloc

* malloc takes the number of bytes to allocate as a parameter and
returns a pointer to the new variable allocated on the heap

¢ Since the amount of memory allocated is dynamic, we can create
arrays where the number of elements is not known until runtime

® malloc is defined in stdlib.h stack

int* a_ptr =
malloc( sizeof(int) );

*a_ptr = 42;

int* b_ptr =
malloc( 4 * sizeof(int) );

b_ptr[0] = 10;
b_ptr[1] = 11;
b_ptr[2] = 12;
h
b_ptr[3] = 13; eap
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1. Using malloc to Allocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main( void )
{
complex_t* c_ptr0 =
malloc( sizeof (complex_t) );

B

1.5
3.5;

c_ptrO->real
c_ptr0->imag

complex_t* c_ptrl =

malloc( sizeof (complex_t) );

heap
c_ptril->real = c_ptrO->real;
c_ptrl->imag = c_ptrO->imag;

return O;
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1. Using malloc to Allocate Memory

¢ Assume we wish to refactor appending
anode to a chain into its own function

typedef struct _node_t

{
int value;
struct _node_t* next_ptr;
}
node_t;

node_t* append( node_t* n_ptr,
int value )

{

node_t* new_ptr =
malloc( sizeof (node_t) );

new_ptr->value = value;
new_ptr->next_ptr = n_ptr;
return new_ptr;

}

int main( void )

{
node_t* n_ptr = NULL;
n_ptr = append( n_ptr, 3 );
n_ptr = append( n_ptr, 4 );
return O;

}

stack

heap
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1. Using malloc to Allocate Memory

¢ Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 #include <stddef.h>

s int* init_array( int n )

+ {

5 int* x = malloc( n * sizeof(int) );
6

7 for ( int i=0; i<n; i++ )
8 x[i] = 0;

9

10 return x;

n o r

12

13 int main( void )

14 {

15 int* a = init_array(3);
16 return O;

17}

How does this address the two errors we identified earlier?
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2. Using free to Deallocate Memory

2. Using free to Deallocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main( void )
{
complex_t* c_ptr =
malloc( sizeof (complex_t) );

c_ptr->real = 1.5;
5

|

1
c_ptr->imag = 3.

B

heap
c_ptr =

malloc( sizeof (complex_t) );

c_ptr->real = 2.5;
c_ptr->imag = 4.5

>

return O;

}
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2. Using free to Deallocate Memory

¢ Every call to malloc must have corresponding call to free
* free takes a pointer to a dynamically allocated variable
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typedef struct

double real;
double imag;

complex_t;

int main( void )

complex_t* c_ptr =
malloc( sizeof (complex_t) );

c_ptr->real = 1.5;
c_ptr->imag = 3.5

free( c_ptr );

c_ptr =
malloc( sizeof (complex_t) );

>

c_ptr->real = 2.5;
c_ptr->imag = 4.5

free( c_ptr );

return 0;
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3. Mapping Conceptual Storage to Machine Memory

3. Mapping Conceptual Storage to Machine Memory

¢ Recall that our current use of state diagrams is conceptual

* Real machine uses memory to store variables

* Real machine does not use “arrows”, uses memory addresses
* Heap is stored above code and grows up
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3. Mapping Conceptual Storage to Machine Memory

int a = 3;
int* a_ptr = &a;

int* b_ptr =

malloc( sizeof (int) );

*b_ptr = 42;

int*x ¢ =

malloc( 4 * sizeof(int) );

c[0] = 10;
cl[1] = 11;
cl2] 12;
c[3] 13;

stack

heap
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3. Mapping Conceptual Storage to Machine Memory

Machine memory in real systems

* Machine memory size ranges from KBs (embedded) to TBs (server)

* Lowest address range reserved to detect NULL pointer dereference

e Static data region is used for global variables

* Machine memory as shown is really the virtual memory space

* Different programs have their own virtual memory spaces mapped
to a single large physical memory space
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