ECE 2400 Computer Systems Programming
Fall 2021

Topic 6: C Dynamic Allocation

School of Electrical and Computer Engineering
Cornell University

revision: 2021-08-28-13-33

1 Usingmalloc to Allocate Memory 2
2 Using free to Deallocate Memory 8
3 Mapping Conceptual Storage to Machine Memory 10

The zyBooks logo is used to indicate additional material included in the course
zyBook which will not be discussed in detail in lecture. Students are responsible for all
material covered in lecture and in the course zyBook.

Copyright © 2021 Christopher Batten. All rights reserved. This handout was prepared
by Prof. Christopher Batten at Cornell University for ECE 2400 / ENGRD 2140 Computer
Systems Programming. Download and use of this handout is permitted for individual
educational non-commercial purposes only. Redistribution either in part or in whole via
both commercial or non-commercial means requires written permission.

1

1. Using malloc to Allocate Memory

1. Usingmalloc to Allocate Memory

* Let’s revisit an example we saw in a previous topic
¢ Assume we wish to refactor appending a node to a chain into its
own function

Draw a state diagram corresponding stack
to the execution of this program

typedef struct _node_t

{
int value;
struct _node_t* next_ptr;
}
node_t;

node_t* append(node_t* n_ptr,
int value)
{
node_t node;
node.value = value;
node.next_ptr = n_ptr;
return &node;

}

int main(void)

{
node_t* n_ptr = NULL;
n_ptr = append(n_ptr,
n_ptr = append(n_ptr,
return O;

~—

S ow

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

* Let’s consider a similar idea for arrays
* Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 #include <stddef.h>

3 int* init_array(int n)

+ 1

5 int x[n];

6

7 for (int i=0; i<n; i++)
8 x[i] = 0;

9

10 return x;

11 }

12

13 int main(void)

14 {

15 int* a = init_array(3);
16 return 0;

17 }

List two errors with this function:

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

* Dynamic memory allocation uses the heap (new region of memory)

* Because dynamically allocated variables are not on a function’s stack
frame, they are not deallocated when a function returns

¢ We can dynamically allocate variables on the heap using malloc

* malloc takes the number of bytes to allocate as a parameter and
returns a pointer to the new variable allocated on the heap

¢ Since the amount of memory allocated is dynamic, we can create
arrays where the number of elements is not known until runtime

® malloc is defined in stdlib.h stack

int* a_ptr =
malloc(sizeof(int));

*a_ptr = 42;

int* b_ptr =
malloc(4 * sizeof(int));

b_ptr[0] = 10;
b_ptr[1] = 11;
b_ptr[2] = 12;
h
b_ptr[3] = 13; eap

Topic 6: C Dynamic Allocation 4

1. Using malloc to Allocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main(void)
{
complex_t* c_ptr0 =
malloc(sizeof (complex_t));

B

1.5
3.5;

c_ptrO->real
c_ptr0->imag

complex_t* c_ptrl =

malloc(sizeof (complex_t));

heap
c_ptril->real = c_ptrO->real;
c_ptrl->imag = c_ptrO->imag;

return O;

Topic 6: C Dynamic Allocation 5

1. Using malloc to Allocate Memory

¢ Assume we wish to refactor appending
anode to a chain into its own function

typedef struct _node_t

{
int value;
struct _node_t* next_ptr;
}
node_t;

node_t* append(node_t* n_ptr,
int value)

{

node_t* new_ptr =
malloc(sizeof (node_t));

new_ptr->value = value;
new_ptr->next_ptr = n_ptr;
return new_ptr;

}

int main(void)

{
node_t* n_ptr = NULL;
n_ptr = append(n_ptr, 3);
n_ptr = append(n_ptr, 4);
return O;

}

stack

heap

Topic 6: C Dynamic Allocation

1. Using malloc to Allocate Memory

¢ Assume we wish to refactor allocating an array and then initializing
all elements to zero into its own function

1 #include <stddef.h>

s int* init_array(int n)

+ {

5 int* x = malloc(n * sizeof(int));
6

7 for (int i=0; i<n; i++)
8 x[i] = 0;

9

10 return x;

n o r

12

13 int main(void)

14 {

15 int* a = init_array(3);
16 return O;

17}

How does this address the two errors we identified earlier?

Topic 6: C Dynamic Allocation

2. Using free to Deallocate Memory

2. Using free to Deallocate Memory

Draw a state diagram corresponding to the execution of this program

typedef struct stack
{
double real;
double imag;

}

complex_t;

int main(void)
{
complex_t* c_ptr =
malloc(sizeof (complex_t));

c_ptr->real = 1.5;
5

|

1
c_ptr->imag = 3.

B

heap
c_ptr =

malloc(sizeof (complex_t));

c_ptr->real = 2.5;
c_ptr->imag = 4.5

>

return O;

}

Topic 6: C Dynamic Allocation

2. Using free to Deallocate Memory

¢ Every call to malloc must have corresponding call to free
* free takes a pointer to a dynamically allocated variable

1

2

3

18

19

20

21

22

23

24

25

26

27

typedef struct

double real;
double imag;

complex_t;

int main(void)

complex_t* c_ptr =
malloc(sizeof (complex_t));

c_ptr->real = 1.5;
c_ptr->imag = 3.5

free(c_ptr);

c_ptr =
malloc(sizeof (complex_t));

>

c_ptr->real = 2.5;
c_ptr->imag = 4.5

free(c_ptr);

return 0;

Topic 6: C Dynamic Allocation

3. Mapping Conceptual Storage to Machine Memory

3. Mapping Conceptual Storage to Machine Memory

¢ Recall that our current use of state diagrams is conceptual

* Real machine uses memory to store variables

* Real machine does not use “arrows”, uses memory addresses
* Heap is stored above code and grows up

Program Conceptual
A g U E— R Storage
Execution t — \‘ ~~~~~ / = ~
Arrow —F— | | State y \
e J a[do] |\
\ N — '/ ptr \\
Statement - o T o avs |
! \ g
Statemeént \)‘ y[20] |y
Syrltax Statement W —
| Semantics ,{ ,"—“1\\
f e)
| yd Pi%
d 124 S /‘*——’
\ . Stack ’
\\ 11:4/[2;}:(1)?8 (Iocal Varlables)
\ y
\
\
\ v
\ ? /
\ /
\ y
N ¥ \Hea
N (dynamically allocated
N variables)
|
Code
0
10

Topic 6: C Dynamic Allocation

3. Mapping Conceptual Storage to Machine Memory

int a = 3;
int* a_ptr = &a;

int* b_ptr =

malloc(sizeof (int));

*b_ptr = 42;

int*x ¢ =

malloc(4 * sizeof(int));

c[0] = 10;
cl[1] = 11;
cl2] 12;
c[3] 13;

stack

heap

124
120
116
112

48
44
40
36
32

Memory
(4B word addr)

Topic 6: C Dynamic Allocation

11

3. Mapping Conceptual Storage to Machine Memory

Machine memory in real systems

* Machine memory size ranges from KBs (embedded) to TBs (server)

* Lowest address range reserved to detect NULL pointer dereference

e Static data region is used for global variables

* Machine memory as shown is really the virtual memory space

* Different programs have their own virtual memory spaces mapped
to a single large physical memory space

Program Conceptual
p N T Storage
Execution_L/’ —— \\ ’/’m;i;\
Arrow "F——F—1 State [)
==] N 2 10 \
Al ==/ P \
Statement - <=7 || @ ave |
II ‘\ x| 10 /’
Statemeént \% — ,
Syrltax Statement e =]
', Semantics Pl /"—_‘7‘\
l N)
'. A S ¢
\ OXFFFFFFFF M , T
. Stack
‘\ Machine /
\ Memory /
\ /
\ * f 4
\ /
. %
\ — .
\
" Heap
N
N 9
\\\ Static Data
Code
0x00000000

Topic 6: C Dynamic Allocation 12

